

iC-PVS

线性/离轴电池缓冲 绝对位置霍尔传感器

描述

iC-PVS 是一款高性能霍尔传感器,适用于增量或绝对位置传感。它产生的模拟正余弦信号可作为下游高分辨率 A/D 转换的输入。

对于绝对位置传感,芯片内部集成了一个超低功耗、可由电池供电的磁性周期计数器。当主电源关闭时,iC-PVS 自动切换到电池供电,并保持对绝对位置的跟踪。电池电流通常在 $2 \cong 30 \, \mu A$ 的范围内,可根据具体应用进行调节。

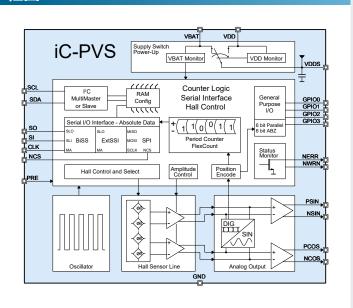
iC-PVS 可与磁极宽度为 1.0 mm 至 2.5 mm 的磁环或线性磁栅配合使用。使用背部偏置磁体可扫描齿轮齿模数为 0.3 至 1.5 的铁质齿轮。

通过内部细分,iC-PVS 还可用作独立的绝对或增量编码器,每个磁性周期的分辨率高达 6 位。

串行 I/O 接口支持 BiSS-C、SSI 或 SPI 协议。此外,还提供增量(ABZ)和并行输出模式。

应用

- 可自由扩展的空心轴绝对多圈位置传感器
- 可自由扩展的线性绝对位置传感器
- 铁质齿轮或磁栅尺扫描
- 可配置的磁感应头
- 增量式扫描


特性

- 高性能霍尔传感器, 带模拟输出, 用于下游高分辨率 A/D 转换
- 适用于磁极宽度为 1.0 mm 至 2.5 mm 的磁栅尺或 0.3 至 1.5 齿模 数的齿轮
- 电池缓冲周期计数的绝对位置数据, 高达 56 位
- 可调节单个机械旋转的周期计数: 1 至 65,536 个磁性周期的 FlexCount 逻辑
- 典型应用中备用电池的电流消耗仅为 2 μ A 至 30 μ A
- 内置 6 位快闪型细分
- 每个磁性周期高达 64 个增量信号的增量输出 (ABZ)
- 串行 I/O 接口 (BiSS、SSI、SPI 和 I²C)
- 跟踪速度高达 75 m/s (1.5 mm 磁极宽度) 或 46,000 rpm (32 磁极对)
- 差分扫描, 可有效抑制外部杂散磁场
- I2C 主机功能,用于从 EEPROM 初始启动
- 超速、电池、失磁和 RAM (CRC) 监测
- 主电源电压为 3.15 V 至 5.5 V

应用示例

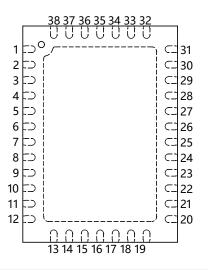
框图

线性/离轴电池缓冲绝对位置霍尔传感器

主要规格

基本信息	
主电源电压	3.15 V 至 5.5 V
主电源电流	典型值 40 mA (3.3 V 电压)
电池电源电压	3.0 V 至 5.0 V
电池供电电流	备用电池模式下典型值 2 μA 至 30 μA (3.6 V 电压)
工作温度范围	_40℃至 +125℃
磁场强度	10 kA/m 至 100 kA/m
磁输入频率	最高 25 kHz
封装	38 引脚 QFN 5 mm x 7 mm

磁环 / 磁栅尺要求	
磁极尺寸	1.0 mm 至 2.5 mm
扫描	差分


齿轮要求	
齿模	0.3 至 1.5
扫描	差分 (背部偏置磁铁)

计数逻辑
电池缓冲周期计数高达 56 位
内置 6 位快闪型细分
FlexCount® 逻辑将 1 至 65536 个磁性周期解释为一个机械周期

输出和接口	
正余弦模拟信号	典型值 1 Vpp 差分,最大值 ±0.5 mA 可调节共模 1.25 V、2.5 V 或 VDD/2
串行 I/O	BiSS、SSI、SPI、I ² C
增量信号	带零位 Z 的 AB 信号(可调门控),每个磁性周期多达 64 个增量信号

信号调节
自动幅值控制
正余弦信号偏移和幅值校正

引脚结构 QFN38-5×7

引脚功能

编号	名称	功能
1	GPIO3	通用设置 I/O 3
2	GPIO2	通用设置 I/O 2
3	GPIO1	通用设置 I/O 1
4	GPIO0	通用设置 I/O 0
10	NWRN	电池预警 (低电平有效)
11	NCS	SPI 低位芯片选择
12	SI	串行接口,从机输入
13	CLK	串行接口,时钟线
14	SO	串行接口,从机输出
15	PRE	预设触发输入
16	GND	接地
17	SCL	I ² C接口,时钟线
18	SDA	I ² C 接口,数据线
19	NERR	错误输出 (低电平有效)
32	NCOS	模拟输出, 负余弦
33	PCOS	模拟输出, 正余弦
34	NSIN	模拟输出, 负正弦
35	PSIN	模拟输出, 正正弦
36	VDD	3.15 V 至 5.5 V 主电源电压
37	VDDS	开关电源电压输出
38	VBAT	电池供电电压输入 (典型值 3.6 V)
	ВР	背部焊盘
其他	n.c.	无连接

