

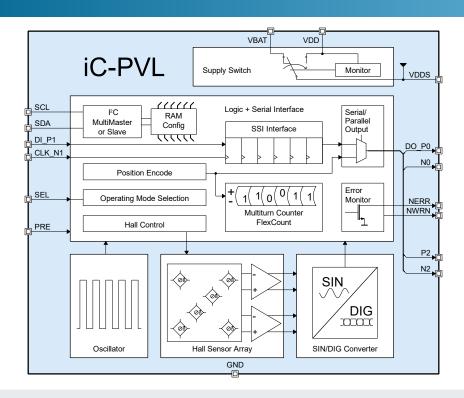
iC-PVL 线性离轴 / 同轴 电池缓冲霍尔多圈编码器芯片

描述

iC-PVL 是一款超低功耗磁编码器芯片,用于线性和离轴/同轴多圈位置传感。在主电源断开时,iC-PVL 自动切换到电池供电并继续扫描位置。

iC-PVL 与磁极宽度为 1.0 mm 至 5.0 mm 的磁环或直线磁栅尺配合使用。对于同轴应用,它可以与径向磁铁配合使用。

由于 iC-PVL 具有多种操作模式,它可以与 iC-Haus 单圈编码器方案配合使用,作为独立的 SSI 或增量式编码器,或通过 I²C 连接到嵌入式控制器。


应用

- 绝对式空心轴位置编码器
- 绝对式同轴位置编码器
- 无齿轮圈数计数
- 线性位置传感器
- 计量应用
- 电池供电的便携式设备

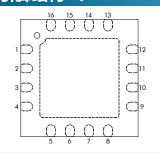
特性

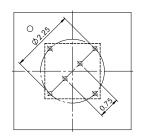
- 具有自动增益和偏移控制的集成霍尔传感器
- 适用于磁极宽度 1.0 至 5.0 mm 的磁栅尺或径向磁铁
- 典型应用中电池供电电流 $< 2 \mu A$ 至 30 μA
- 跟踪速度高达 24 m/s (1.5 mm 磁极宽度) 或 15,000 rpm (32 磁极对)
- 高达 40 位的可配置多圈计数
- 可调节每转周期数: 用于 1 至 256 磁极对的 FlexCount® 逻辑
- 串行、并行和增量式单圈操作模式
- 带错误、警告、奇偶校验和同步位的 SSI 多圈数据输出
- 通过引脚或命令预设多圈
- I²C 主机功能,用于从 EEPROM 初始启动
- I²C 从机功能,用于控制器操作
- 电源电压 3.0 V 至 5.5 V
- 备用电池自动低功耗运行
- 超速、电池和 RAM (CRC) 监控
- 节省空间的 16 引脚 QFN 封装

框图

iC-PVL

线性离轴 / 同轴电池缓冲霍尔多圈编码器芯片

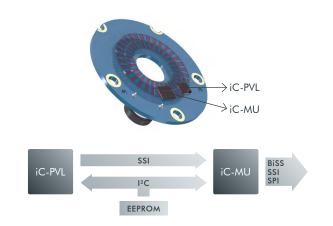

主要规格

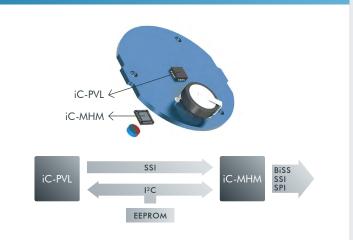

基本信息	
主电源电压	3.0 V 至 5.5 V
主电源电流	典型值 4.0 mA
电池电源电压	3.0 V 至 5.5 V
电池供电电流	典型值 < 10 μA (3.6 V 电压)
工作温度范围	-40°C 至 +125°C
磁场强度	10 至 100 kA/m
磁输入频率	最高 8 kHz
磁输入加速度	最高 3·10 ⁶ rad/s ² (电子)

磁铁目标要求		
磁极尺寸	理想尺寸	扫描
1.0-2.0 mm	1.5 mm	离轴,差分
1.0-2.0 mm	1.5 mm	离轴,单端
2.0-4.0 mm	3.0 mm	离轴, 单端
4.0-5.0 mm	4.5 mm	离轴, 单端
ø 3 至 8 mm,径向磁铁		同轴,差分, ø 2.25 mm 霍尔圈

操作模式	应用
SSI 多圏 (9 至 40 位)	用于带多圈接口的传感器 (iC-MHM,iC-MU,iC-LGC,iC-MN等)
链式多圈 (9 至 40 位) 带单圈输入 (3 至 18 位)	具有单圈同步 (iC-LNG, iC-LNB 等)
独立 SSI 多圏 (9 至 40 位)	用于电池缓冲位置编码器和 计量应用
并行单圈 (3 位)	并行互补输出
I ² C 从机模式 (嵌入式控制器操作)	通过 I ² C 进行配置、位置数据 和命令执行

引脚结构 QFN16-4x4




引脚功能

编号	名称	功能
1	SEL	模式选择输入
2	PRE	预设触发输入
3	NERR	错误输出 (低电平有效)
4	SDA	I ² C 接口,数据线
5	GND	接地
6	VBAT	电池供电电压输入 (典型值 3.6 V)
7	VDDS	开关电源电压输出
8	VDD	+3.0 V 至 5.5 V 主电源电压输入
9,11	N2,N0	并行输出 Bit 2, Bit 0 (负逻辑)
10	P2	并行输出 Bit 2 (正逻辑)
12	NWRN	电池警告输出 (低电平有效)
13	DO_P0	多圈接口,数据输出/并行输出 Bit O (正逻辑)
14	CLK_N1	多圈接口,时钟线/并行输出 Bit 1 (负逻辑)
15	DI_P1	多圈接口,数据输入/并行输出 Bit 1 (正逻辑)
16	SCL	I ² C 接口,时钟线

应用示例

- 使用 iC-PVL 和 iC-MU 的离轴磁性多圈编码器
- 高达 19 位单圈和 18 位多圈分辨率
- 从单个 I²C EEPROM 设置

- 使用 iC-PVL 和 iC-MHM 的同轴磁性多圈编码器
- 高达 14 位单圈和 32 位多圈分辨率
- 从单个 I2C EEPROM 设置

